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Using the relationship between the basic solutions of Laplace’s equation in toroidal and spherical 

coordinates, the Fourier method is employed to solve the problem of the equilibrium of an elastic space 

weakened by two spherical cavities and an external circular crack. The proposed approach leads to an 

infinite system of linear algebraic equations of the second kind with exponentially decaying matrix 

coefficients. A small-parameter expansion is used to obtain an asymptotic formula for the normal stress 

intensity factor. 

1. LET a, p, cp; a, 6, cp; r, 8, cp; r,, Cl,, q+, p, z, cp; pl, zl, (pl be toroidal, spherical, and cylindrical 
coordinates defined by the following formulae [l-3] 

x = a$* sh a cm cp, y = ahe” sh a sin cp, 

x = ahi sh a cos cp, y = aG* sh a sin ‘p, 

x = r sin 8 cos ‘p, y = r sin Bsin cp, 

x = p cos cp, y = p sin cp, Z=Z 

x1 = x, YI=Y, z*=z--h 

Pl = P7 Zl = z - h; p1 = r,sin 01, 

z=a$2sinp 

2 E ak2 sin u 

z = r cos 8 

Zl = rlcOs e1 

(a > 0, h 2 0; 0 d a, p, pl, r, rl < 00; - m < z, z1 c 00, --II S p, Q d IF, 

O=S cp s 2x, 0 6 8, e1 Q 7c, 

hp=Jcha+cosp, &=.&iKGz 

In the case of a homogeneous isotropic elastic body the equilibrium equations can be reduced 
to the Lame vector equation 

1 
-graddivu+Gu=O 
l-2v 

(1.1) 

Here P is the elastic displacement vector and v is Poisson’s ratio. 
The relationships between the basic solutions of (1.1) in spherical and toroidal coordinates 

can be obtained from the following equalities relating the basic solutions of Laplace’s equation 
in these coordinates (the factor eW is omitted on both sides of each equality) 
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0 5 
a 

“P,“(cosO,)= $ j u~)(~)e~P_“H+,,(cha)~(IPI<A) 
-en 

+m+l 

h 0 e-mp_>+iz(cha) = ngO d:“‘)(2) Cn (cos 0, ) I 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

Here 

2”-+I + m)! 
a:“‘(z) = (-i)“-” (2m)!(n _ m), (l- iEYbrn 

F(m-n,iy-iz+m;2m+.l;y) 

. chlcr 

F(-n.a; c;z) = X0 
n (a),(-n), zm, E =i 

(c), m! 
a’ 

(a), =a(a+l)...(a+m-1). y=& 

p,“(x) are associated Legendre polynomials, Pvm(z) are associated Legendre functions of the 
first kind, T(z) is the gamma-function, F(-n, a; c; z) is the hypergeometric polynomial in z, and 
(a),,, is the Pochhammer symbol [3,4]. 

The method of obtaining expansions of the type (1.2)-(1.5) and using them to solve the 
scalar and vector boundary-value problems of elasticity theory is well known [5-71. For m= 1 
the expansions (1.2)-(1.5) enable us to study a number of problems on twisting: (a) a body 
PI s fi s p, weakened by a spherical cavity 0 s r, s R or several disjoint spherical cavities with 
centres on the z axis; (b) a sphere 0 d r, s R with a cavity p, d p G p,. 

2. Let pz, tz, (pz; r,, 8,, (pz be the cylindrical and spherical coordinates defined by 

p2=r2sinCj2, z,=r,cos0,; p2=p,, z2=-zl-2h=-z-h 

We will consider the equilibrium problem for an elastic space weakened by two spherical 
cavities 0 d r, G R and 0 6 rZ =S R symmetrical about the plane z = 0 and an external circular 
crack (cut) p = +rr (see Fig. 1). We will confine ourselves to the case when the crack edges are 
free from any external forces and do not touch one another, while the surfaces of the cavities are 
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Fro. 1. 

subject to a hydrostatic pressure of intensity o, > 0. 
The corresponding boundary conditions have the form 

bj’ qqi’ o,, Tpr are the components of the stress tensor in spherical and cylindrical 
coordinates). 

We will represent the general solution of the vector equation (1.1) in the form 

u = 6% - 2 grad)@ + 0% - q grad)Fl+ (q2 - z2 grad)F2 - grad(cp + f + ~1 (2.3) 

Pi = 5 (2n - 1)E~1’r;“P,_,(cos8,), F, = i (2n - l)B~%.“P,_,(cos8,) 
IF4 n=l 

f = -4 (tl+ 3-4V)~~‘~~~-~“-1~~,_2(cOS8,)+r,-~”-’~~,_2(cOS82)] 

w= -nzo 8~2)[r;“-1Pn(cos0,)+r~n-1~,(cos82)] 

(zl=z-h, z,=-z-h; ~=3-4v, e , er2, e, are the unit vectors of the corresponding systems 
of coordinates), which ensures that T2.2) is an identity. 
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On verifying boundary conditions (2.1) using the decomposition formulae 

r,-“-‘P.(cos8,) = (2h)-“-lk;0 (--l)n+i ~(2h)-‘r:pt(coseJ @I < 2h) 
. . 

~~((2)=M[C(O)(z)-C(O)(-2)] n n 

which follow from (1.2) and (1.3) and the equality [S] 

(w=l-2rn+t2) 

for a = n + 1, t = -r, l(2h) and x = cos6,, after some reduction we find the following system of 
relationships between the integral density A(z) and the coefficients B’,‘) and @) 

A(z) = - : B(‘)a-“(a2 n 
II=2 

-2n_l+2v)!i$_ 2 n(2n_l)Bf)ha-“-’ k(‘) 
#I=7 l+wT 

- i (n + l)Bi2)amnm2 n+l b (7) 
n=O Ch.JIT 

#‘R-3 = ’ +” - 3nz2 (-l)“n(2n-1)(2h)-“-‘B!) +ya-‘q, -s 
4G 

-Bf)R-kk(k2 + 3k-2v)+ Bj2)R-k-2(k+l)(k+2)= 

= _ $ B(‘)(_l)“+k (n+k)! 2n-1 
Rk-’ 

n 
Ia=2 (n-l)!kl2k+3 

-(k2 -k-2-2v) (2h),.+k-, - 

_ i B(‘)(_l)“+k-’ (n+k-l)I(k-1) 2nk-n-k+4-4v Rk+’ 
n 

n=2 (n - l)!(k -l)! 2k-1 (2h) 
n+k+l - 

-nj=o B;2’G1) 
,,+k (n + k)!(k - 1) R’-’ 

-k(k-1): t 
k-l 

n!(k -,I)! (2h)“+‘+’ 0 
qk - 

-s(k2 -k-2-2vj(t) 
k+! 

qk+l -$$(k2 -2k-1+2V) 
0 

t 

k-l 

qk-1 

Bf)R-‘k(k2 - 2 + 2v) - Bj2)R-k-2k(k + 2) = 

= wnf2 Bjl+_l)“+k (n+k)!k 2n-l(k2+2k_l+2v) R 
k+l 

(n-l)!(k+l)! 2k+3 (2hy+k+l - 

-4 B:‘)(-l) 
,,+k_l (n+k-l)!(k-1) 2nk-n-k+4-4v Rk-’ 

(n-l)!(k-l)! 2k-1 (2h) 
n+k-I - 

-n;o Bi2’W 
,,+k (n+k)!(k-1) Rk-’ 

n!(k - l)! (2!~)“+~+’ 
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-&tZ+2k-1+2v)($ 
k+l 

‘&+I - &(k2 - 2k - 1 + 2”)(t) 
k-l 

qk-1 

(k = 1,2,...) 

qs = [ A(r)i;,(z)dz, b,(~.) = 2[6;“‘(7)-bjo)(-~)] 

Now, eliminating A(z) and setting 

s;R’+lb:‘) = I$‘) (k =2,3...), 0O2k_1p+3p = $2) 
4G 2k+l 

(k= 0.1.2 ,...) 

o = 2(k2 +2kv+k+l+v) 
’ (k+2)(2k-1)(2k+3)’ 

p$I = (-? “+k+‘(n + k)!(2n - 1) 
2*+‘+‘n!(k + l)! 

Ak=k2_2~+k+l-v, o$‘= J;?$;;;k’i),, a!l’=k(;;-‘) 
2 k. -. k 

(2) _ w-w+o, 
ak - 

2Ak 

p$) = (2n - l)(k - l), p$ = E(2k + l)(k - 1) 

(1) _ Wk + W - 1) (2nk-n-k+4-4v), y, = 
?12 -2n-1+2v 

‘& - (n+k)(2k-1) n 

6 ._(n+l)(2n-1), & EC? 
n- 2n+l h a 

we obtain the following infinite system of linear algebraic equations from which to determine 
bf) and by) 

@’ = g @‘@‘+ f @‘kp’ n (k = 2,3,...) (2.4) 
.n=2 n-0 

@’ = g @Q + 2 ~i;~‘b;~’ + fj2’ (k = 0,1,2,.. .) 
IF2 n-0 

jj2’ = 1, fj2’ = 0 (k = 1,2,...) 

Dg) 
l+v = y(_l)“+ (2n - 1)2-“-’ + y*&n+lJ”_l, + (2n - 1)&“+2J,r lin+1 

Dg) = (a$‘pz - a:)&“+‘+1 [YnJ,,_lk+l + (2n - l)tid+l])hn+‘+’ - 

-(a$$$) + o~2)&“+k[YnJ,,_lk + (2n- l)EJ,l+ 

+a~3’&n’k-1[YkJn_1k_l + (2n - l)ti,,&_, l$n+k-l 

DL2) = (a$$$) _ oi2)e”+k+2&n Jn+lk - a~3)~“‘k’1~nJn+lk_l)hn’k’1 - 

-a~1)&“‘k’38nJn+,k+lh’k’3 

4n 
(21) = @’ - [p$’ + ynEn+k+lJn_lk+l + (2n - l)~“+~+~ Jd+I]tokhn+t+’ 

(22) 
Dkn = Dg2’ - ~k8,&n+k+3J,,+lk+lh”+k+3 

(2.5) 
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Taking into account that [4,9] 

fi 
F(-n;)/z-iz;l;y)= c 

$-n)J(J$ - iz + s) rs 
SIO (s!)2r(&&) ’ 

&=r(X+@r(K-h) 

j r(~~~~)r(~-~)r(~ 
jlil 

-i~+j)r(jq+kfz)dz=21t- 
-w j+l+l 

we can rewrite J$ in the form 

Since 

it follows that 

l-@-Y) 
m+k+t 

y(m+k+l) 

which implies that 

JS = $1) 
m+f+r (e + i)m+k+t+l - (e - i)-+k+l 

(m + R + 1)(1-b @+*+l = 

= q(-l)“,, m$~lC~+k++zi sin x!m + “2” I- ‘) (m + k + 1j(: + e.~m+k+, 
cm 

For Jzi, whose structure is more complex, it is only possible to obtain the recurrent relations 

J(2) 
ItI&+ (m = 1,2,...; k = 0,1,2,...) 

(2.7) 

(2) 
&It+1 = - 

1 (2) 2 
zJOk +- 

t-4’ 
x &(k + l)(l+ &2)k+r &X0 

J$’ 
lc E 

Jg) = JW nut (m,k=0,1,2 ,...) 

Formulae (2.6) and (2.7) are suitable for computing the matrix coefficients (2.5) of the infinite 
system (2.4), but they are of little use in studying the properties of that system. A preli~nary 
analysis of the matrix coefficients indicates that to study the properties of the infinite system 
(2.4) for various relations between u, R, and h, it suffices to investigate the behaviour of Jo 
as m + k -+ 0. To estimate Jz@) we use the Cauchy-Bunyakovski inequality 

[@(&)I2 s $2’ ,,,&)@(E) (J:‘(E) * b) 
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Representing Jo in the form 

e e4rac4?e 

J:‘(E)= j ----d’F)df, 
_.. ch21Cz 

q:(2) > 0 

qn(z) = (_i)“Jz (leiE)” 
(1+E2>“+K F(-4-J$-iz;W, Y =A 

and taking into account that e2’Wctge d 2 ch ICZ (0 c E < 00, - < T c -), we have the inequality 

. 2n 

J(~)(E) d 4(-l)” M (‘- ;E)Zn+l R,,(E) 
(l+e 1 

q,' j p*e 
r(H+ iz) 

r(J$ - iT + j)r(x - iz + I)& = 
-” r(J$ - iz) 

=2~i~ej!l!F(j+1,1+l;l;-e2i*~ge) 

Now, using the relations [8] 

= @)l(b’), 1 

,zo f!(d), 
I F(a+Z,b;c;x) = F2(a,b,b’;c;c’;x;t) 

for a=l, c’=l, c=l, b=j+l, b’=-m, t=y, x=-exp(2iarctge) and 

F~(a,b,b’;u;u’;w;z)=(l-W)-b(l-Z)-~F b,b’;u; 
( (1-w;1-z) 1 

for a = 1, b = j+ 1, b’= -m, t = y, w = -exp(2iarctge), z = y, after some reduction we arrive at 
the equality 

R,,(e) = (-1) 
n (l+ie)” &? 

(l_ +),, 

It follows that 

[J$(E)]~ s 16(1+ E’)-~-~-’ (O<E<m) (2.8) 

Using (2.8) one can verify that for 0 < h < 1 and i = 1,2 

@’ _ (.Q$$n+~+l = O(nk-‘(n + k)e-s(fl+i+l)) 

W) 
D*, - a$$~)~“+k+l = O((n + k)e-s(n+c+l)) (n + R --) 00, s = -In A) 

i.e. the matrix elements of the infinite system (2.4) for 0 < h c 1 decay exponentially in each row 
and each column. Moreover, for 0 c h = Rl h c 1 

f [@)I2 < 00, f [Djy']" < = . 

k.n=l n=2 
: [D:';)12 < = (2.9) 

k=2 

From (2.9) and the fact that (f,“)) belongs to the Hilbert space Z, of number-valued sequences 
it follows that for almost all h E (0, 1) a unique solution of the infinite system (2.4) in 4 exists, 
which can be found by the reduction method [lo, 111. The estimates (2.9) enable us to conclude 
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that the infinite system (2.4) is quasiregular for 0 < h c 1 and completely regular for 0 < h d 
1, c 1 for some h, E (0, 1). 

The restriction O<h ~1 of possible values of h is connected in a natural way with the 
formulation of the problem in question and means that the spheres r, = R and r, = R do not 
intersect one another or have a point of contact. 

Solving the infinite system (2.4) by the small-parameter method and confining ourselves to 
those terms that enable us to compute the normal stress intensity factor KI up to the terms of 
order A6 inclusive, we get 

d” = doh3 +0(X4), bj” = o(P+‘) (k = 3,4...) (2.10) 

@‘=l+ l+v -y6,e3J,,113+ O(h4), bj2’ = O(k4) 

6i2’ = cI(L~+~) (k = 2,3,...) 

do = @fig) - cti2)E46,J,2 - u$3)&36r)J*1 

4E3(1+E2) - 2E(1+E2)2 

+$l-3&2) 
3 (1+E2)3 1 

On the basis of the asymptotic solution (2.10), we have 

+b’2’6,r,+,)(AE)“+3 2a,& 
n =-y(l+E’)” X 

d(,(E*-Y2+y2E2)- yE’(l- E2)& E3k3 +0(x7)); 

E. = 3E2(3-E2) D1 (E + i)“+?t (E - i)m+l 

l+e2 ’ (1+&2)m+1 
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